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SUMMARY

In order to describe the propagation of high energy solar protons
in the interplanetary medium, the kinetic equation is applied in the Fokker-
Planck approximation.

Analysis is performed of the solution of this equation so as to
ascertain the conditions of observation of strong anisotropy in the angu-
lar distribution of relativistic protons generated during solar flares.

It is obtained from the comparison of theoretical results with the
observation data on the flare of 4 May 1960 that the diffusion coefficient
D increases with the distance from the Sun approximately as re, Near the
terrestrial orbit D = 5 1 cml/sec.

As is well known, certain flares indicate a strong anisotropy
in the angular distribution of high energy solar protons in the initial
stage of the flare., This means that protons, reaching the Earth in that
period, undergo no substantial deviations. In this case the diffusive ap-
proximation is inapplicable and the use of a more general equation is
required.

Measurements of interplanetary magnetic field on Mariner-2 show
that there exists near the terrestrial orbit a magnetic field with a mean
quadratic intensity of 3 e10™2 gauss and irregularity dimension from 101l

cm and less, On such an irregularity a relativistic proton with energy

* O RASPROSTRANENII VYSOKOENERGETICHESKIKH SOLNECHNYKH PROTONCV V MEZH - -
PLANENTNOM MAGNTNOM POLE



3. 109 ev scatters over an angle < 20°, Consequently, in order to describe
the propagation of high energy protons in interplanetary medium, one may
apply the kinetic equation in the Fokker-FPlanck approximation.

The present work is devoted to its solution when applied to a solar
flare; at the same time, principal attention is given the ascertaining of
the conditions at which observation is possible of strong anisotropy in the

angular distribution of solar protons.

BASIC EQUATION. - We shall consider that the interplanetary magnetic

field consists of two components

B =B, - By, (1)

where B, is the regular magnetic field that approximates large-scale fields
of which the dimensions are much greater than the Larmor radius of the par-
ticle); Bl is a uniform random field, which will be given by the moments
(Byd=0, <Bii(r))Bui(rz)> = p? cxp( —l_'%z-fi'-z-> (2)

where Zir Lt it are the spatial vector componénts in the spherical system
of coordinates, i=r1,, Angular brackets indicate the spatial averaging.
The magnetic field is considered stationary.

vle shall denote by k the unitary vector in the direction of par-
ticle motion (k=v/|v]). we have for the accretion Ak of the vector k in
the time interval At

A

e 1 e —Al
Ak=_§[k'><3qdzz—{kx§B'dt']. @)
me me )

Here m is the total mass of the particle, At must be so chosen
that the particle pass through many irregularities and yet with a small
deviation in the direction. Effecting combinations from (3), and averaging
with the utilization of (2), we shall have

eB, 282 2Yna
/.,' == =S i — o b=
CAkg) - At = o At, <Ako> w8 0 At qcthAt,
C(Ake)2> = 2gAt, {(Ako)® = 2“.’ AL (4)
sin® 0

where © and ¢ are the angular coordinates; € is counted from the radius;

¢ is the azimuthal angle.



3.

Utilizing these expressions for the moments, and estimating the higher
- order moments to be small, we shall obtain from the Markov equation, linking
the value of the distribution function N(r, 0, o, 1) at times t and t + At,

tke kinetic equation in the Fokker-Planck apsroximation

an vsin@ dN vsinOsing ON
— vk — —— ctgn —— =
ot ok grgd o r d@ r £ do
7 N g N oN
—_ T - €1 .
=m0 0205 Smre 9 © de (5)

(V(r,0,9,2)dr dk ig the number of particles in the volume dr, having velocity
directions confined in the solid angle dk).

The energy of the particle does not vary, for the field is considered
stationary. The detailed development of the result is available in ref, [11].

SPHERICALLY-SYMMETRICAL FLARE.- Let us consider at the outset a
spherically-symmetrical point flare in an infinite uniform medium The kine-

tic equation and the initial condition then have the form:

ION 0 aN sin O 01V_ 1 i <in 0 gg 6
IRk R M A Tl s e b TR (6)
N
7 —_—
Ni=o= 527 (- O

Moreover, N (r,8,t) must be a periodiccl and symmetrical function
of ©
N(0) = N(0 L 2xn), N(0) = N(—0). (8)

Expanding N by Legendre polynomials

N = i an(r, t)Pr(cos ), (9)

k=0

we shall obtain for the coefficients & the chain of equations

E{'"A + v,c j{lh_—i' + U(,C + 1) Vaaf(“ri —
a o U—1 o 2k+3  or
—1 E+1) (k42
_?_(c(lc 1) v (E+1)(k+ )_'a,‘“-.-_-—qk(k-}-i)dh. (10)

r _éict-{—' ap—1 ;.— 2k + 3
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Let us write the first two equations

Uiy v day 2 ag Ba, an 3 aaz 6 a
T R p— - P — -——-—._--—-2 ai.
oL .A 3 o 3U ; 0, + + v 5 qay (11),

5 or
The diffusive approximation is obtained in the case, when instead
of the second equation of the system (11), we would write

2gay = — v-@—‘—)- . 12)
ar

Note that A4xa, is the spatial density of particles and Vay /3 is
the flux. From the first equation (11) and from (12) we may obtain the dif-
fusion equation with the diffusion coefficient

D = v2/6q.

However, the eguality (12) will be valid if the processes are suffi-
cieﬁtly slow and sufficiently isotropic. A simple solution may be obtained
in the case, whereby rejected in the system (11) are only the terms contain-
'ing ap, leaving the term 0a,/d. , that is, in the assumption that the pro-

cesses are sufficiently isotropic, Thus we have the system

voa 2 a day ., 9% o,
_+ 3 a,_+"‘ = =0, ot o | =44y ’ (13)
- . .
ap|1=0 = Teia n, a1 |t=o = 0. (14)

Let us now perform the Carson-Laplace transformation

ay =2 Sake—z‘ det, : (15)
']
As a result we shall obtain
' v 1 0, 94

Limited at r — oo, the solution of (16) will be

50=-;0XP (—{VM))-



The constant ¢ is determined from the condition

T N
aortdr = _ (17)
-S,“" T
Thus
_ 3Z(Z+9a) rol—
= —exp [——5752(21'—2‘1) ] (18)

Passing from the image to the original, we obtain

3V3N
ao=%~ O (vt — }/.Sr)e—qt

, Ng 3 s
Tiﬁ:ivi* Z _qt[l‘(x)'}——lﬂ(‘t)-mln( )J- (19)

Analogously obtained is the expressions for ay

_Ng® 3y3rq
"= 16208 vl

et [zom——L(r)] ()

Here I} is a BDessel function from the imaginary argument of the
i-th order; z=gq/v(v**—3r’)% The expressions (19), (20) determine a, and a;
at 2> 3% aa=a1=0 at %2 <32 For great t formulas (19), (20) pass asymp-
totically to formulas of diffusive aprroximaticn. Graphs of ao and al depend-
ence on r at gt =3 (s0lid curves) are plotted in Fiz.l. For comparison
we brought out also the values of a, and ay in diffusive approximation
(dashed curves). As may be seen, the main discrepancy is obtained in fluxes.
Inasmuch as in the initial equations we neglected the terms contain-~
ing a,, the condition of (19), (20) applicability will be the smallness of a .
This quantity may be determined by an approximate formula obtained from the
third equation of the system (10C)

1 v dag

P~ - —— -—-——a
o2 9q 6r+‘) qr t

Substituting its value according to formula (20) in place of ay
we shall have

__ 3Y3Ngr

41, 8 )
16n20°28

o) (1= 77 +57)- (21)

The estimate of a, shows that (19), (20) are valid through r=vt/¥3
at qt 5. For great t, these expressions are valid only for r<ro<<uvt|y3,



at the same time, this inequality is strenghtened with the increase of t.
The distribution of particles at vi>r> vt/}}g is given by the § - function.
This is the corollary of the unaccounted as. Therefore, for the description
of particles found at r> r,, it is necessary to take onto account as, ag
and so forth., that is, in the zone r > r, the particles are distributed
anisotropically.

IgN
2 f—
’_
\ .
o\ , L e
0 ! 2 rqfv ) 0 7 4
Fig. 1l Fig. 2

Let us pass now to the question of angular distribution of particles
in the zone r >r, . For the solution of this problem we shall substitute
the derivative in respect to © by finite differences, using the method of
straight lines [2]. As a result, we shall obtain instead of the equation (6)
a system of equations in partical derivative of first order

i vsint;

PR oN
9_27+ veos 9‘_(97 T o (Nigg— Niyg)=
.l .
=—;—z(NiH—ﬂVi+Ni—1)+—é—hctge,-(NH_l_N‘.__!). (22).
Here h is a step; N;==N(r,0,1);i=0,1,2,...: Niis the mean value of

the function N (r, @, t), averased in the interval 0i--'/oh, 6;+ /zh.
Subsequently, we shall make the folloving aviroximations: inasmuch
as in the considered zone the particles are strongly anisotropically distri-
buted, we shall neglect in the equation (22) the terms containing N,3 since
the thickness of the considered zone is less than the distance to the center

when t dis not too great, we shall also disregard the sphericity.



On the whole, we have the following system:

alN, 0Ny i .
o -+ 0,94 = q4,02N, + ¢4,02N,,

oN.
ér‘= q1,64N, — g4,10N,. (23)

Here the coefficients are computed at h =40°, 6, =20°. If for ini-
tial conditions we take

Nojt—o = E_Zrz 8(r), Ni|1=o=0, (24)
the solution of the system has the form
4,54
o= —1@75 8 (L — L)t =
+ Zf_!ii;* S 14(2.579YF — B) expi—4,064t — 0,043,
Ny = _f’-é'itﬂ I,(2,57qy# — T) exp[—4,06q¢ — 0,04Z] (25)

E— 4,54("— — 0,72:) ,
D

" where No,N; =0 at #<<[2 This solution describes satisfactorily the dis-
tribution of particles at qt < 1, when the velocities of the principal
mass of particles are directed forward. At great t it is applicable only
for the outermost parts of the zone r >Tr,. For the inner part of this
zone it is necessary to account for the particles having drifted into tke
zone r < r, and having caught up with the zone 2 >z, again after a series
of scatterings. In order to take these particles into account, we shall
proceed as follows, VWe shall choose a distance Ty, such that formulas (19)
and (20) be still valid, and that at the same time there be a sufficiently
strong anisotropy in the angular distribution of particles (that is, a, and
a, are comparable). For not too great t we may choose for ry vt/y3. Having
expressed N, and N; DY a5 and aj at the point r = ry, we shall obtain
the boundary conditions for the system (23):

I{u(‘),

1
No| =t jy5= (@0 + 0,94 1) |s=viryy = G5p—

1
Nilr=evi= (a0 + 0,50 a1) | ,=ue V3 = 0080 pa(t). (26)



The quantities p; have the sense of power . of kind-i particle sour-
ces, moving with the velocity v/}3. Resolving the system (23) with zero
initial conditions and boundary conditions (26), we shall obtain

2

t
1,972

t
No=%SoPo(t) No (r—%, t-—-'t) dx,

12

. t -
N,:q.Spo(t) Ni(r—‘—l‘{fa t—-—t)dr. 27)
v, V3

1,572
Here N, and N; are determined by formulas (25), the multiplier
r-2 being rejected. The multiplier *!:2/1.51:2 approximately accounts for
the sphericity. The results of numerical calculations of time dependence
of particle intensity in the directions 20, 60,100, 180° over distances
rq/v =1,3,5 are plotted in Figures 2 — 4. It mey be seen from the graphs
tnhat for a spherically-symmetrical flare strong anisotropy in the angular
distribution of particles will be observed only at 7¢/vX1 at time of onset
of particle density maximum (that is, No,and Ny differ substantially).

N

zt 9=20°

lgn 9=20° e /':_
182°™ //
/ /\7/-
L 1t /

tq L L 29 o
0 j'- Ib g 10 20

Fig. 3 Figo ll'

AXTSYMMETRICAL FLARE, -~ Let us consider a flare with a directed

ejection. We shall assume that particles are ejected at the point r = O
along tha axis M = O. In this case the kinetic ecuation has the following

form aN aN sin 0 0N+ » sin0 cos @ _6_\1_
FRIEA A TS F on
sin0sin @ oON ¢ @ . _571\’ g N ° N - (28)
-V r etgn dp  sin0 75651!16 a0 + sin?@ d¢® T de
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Representing N in the form of series

N = Do(r,n.0,1)+ Z [Du(r,n, 0,2)cos kg + ¢y (r, 1, 0, t) sin kq] (29)

k=1
we shall obtain in the diffusive aprroximition for the propagation along
the coordinate 3 the equation determining b,

01)0 abo vsin 0 abo
A g Treeslom————r=
quisin* 0 1 0 by q @ Obg

= —sinn —2 — sin B2 (30
4rt(o?sin 0 + ¢?) sinn ans””‘ dn ' sinB 90 sin® a0 - )

The following initial condition must be added to the equation (30):

'
bof1=0 =

N "
o =6(r)6(1—cosn)6(1—-c050),. (31)

alongside with the condition of periodicity with respect to 1 and 6.

Estimating that «3>¢, we see that the coefiicient at the derivative
with respect to n does not depend on 8, provided we estimate also that it
is independent from r (that is, taking the effective average), the variable
% is determined from the remaining in the form

i —7\7»———1 C‘](___"LZ_) ' (32)
U" e 2])];6 ’ 1 45]]t )
Here Ny is the solution for a spherically-symmetrical flare; ﬁ"l

is the effectiv~ value of the coefficient at the derivative with respect to

Dy = qi*] it

We shall consider the question ag'ghow the flare's nonsphericity can
manifest itself upon the observation condition of strong anisotropy. As may
be seen from the earlier presented graphe, in the case of spherically-symmetric
flare the intensity rises - extremely rapidly in the anisotropic part of the
curve and the multiplier 1/'13‘1: can not influence somewhat substantially
the shape of the curve in that part. In Fig. 5 we brought out a graph corrobo-
rating thics remark. It indicates the course of intensity with time for rg/v=3,
n = 0. The exponential multiplier cxp (—n*>4D,l) may shift the maximum to
the isotropic region in the case when n*>>4/y/. Therefore, the strong ani-
sotropy will be observed only in the case when the observed is located inside

the cone r¢/v X4, 02 < 4Dyt
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COMPARISON WITH OBSERVATIONS.- Let us compare the conclusions
obtained with the observation data on the flare of & May 1960 brought out

in [3]. The symmetry axis direction of the flux of arriving protons deviated
by S50° to the west from the direction at the Sun. Apparently the particles
were led by the lines of force of a regular spiral-like field; this is why

in the given case the angle must be counted from the direction of the line

of force of the regular field at the given point and not from the radial
direction, as the former coincides with the symmetry axis of the flux.

Taking this remark into account we shall apply the results obtained for
.the radial field to the real, estimating that other variations are immate-~
rial. According to data of [3], a strong anisotropy was preserved in the
course of a half-hour after onset of particle demsity maximum, This means,
first of all, that at time of that flare, the Earth was located in the
favorable cone. Secondly, the duration of the strong anisotropy was deter-
mined by the duration of source's operation, for, as may be seen from the
above graphs, the duration of strong anisotropy does not exceed a few minu-
tes in an instantaneous source. Plotted in Fig.6 are the values of inten-
sity in the directions of 40 and 60° as a function of time at g=2 . 10-2 8™},
r =1,5 ¢ l()]'3 cmy, N == 0. The power of the source had an exponential depend-
ence on time exp ( — t/to), where ¢ =16 min. The velues of fluxes observed
at the respective points on Earth are plotted by circles and triangles.

It may be seen that the curve brought out describes satisfactorily the force
and the duration of the anisotropy.

to

tion time of the region of diffusion in Sun's vicinity. Let us pause at the
second variant. The deexcitation time of a sphere of radius R, filled with
a medium with diffusion coefficient Dp, is approximately equal to RZ/DR.
Assuming R= 10R 0= 7 o 101]'cm and ostimatinga(t)he geexcitation time to be
equal to 16 min., we shall obtain Dp== 5 <10 ~ cm -sec. For the farther
parts of the interplanetary space the diffusion coefficient is equal to

DA = 5 . 1()22 cmasec. Obviously it is not indispensable to estimate that

may denote the source's operation time as well as the deexcita-

the near-solar diffusion region is sharply outlined. It is more plausibie
to postulate a smooth variation of the diffusion coefficient as the distance

from the Sun varies,., In this case DRis a certain effective value of the




diffusion ccefficient at small distances from the Sun, whereas I)A is its
mean value at more remote distances, through the Earth's orbit. Note that
inasmuch as the anisotropy region was investigated by a curve, the medium
beyond the Earth's orbit did not practically affect the values of the para-
meters being determined. The diffusion coefficient determined over the drop-
ping part of the curve, refers mainly to the space beyond the Earth's orbit.
According to the data of [4], it is equal to 3 »10°2 cm@.sec. Therefore,

at r<1 a.u. the diffusion coefficient rises rapidly with the distance
(approximately as r2 ), while at r > 1 a.u. it is nearly constant. The last
circumstance may be explained by the inﬂuencé of the regular field, which

beyond the Earth's orbit becomes essentially azimuthal.
gN

Considering the value of the mean Py

square of irregular field's intensity as
known, we may be able to determine the cha-

lg¥ §=20° |

rl— 60°, oy

{
! . g, M % ur’
0 5 10 '
Fig. S Fig. 6

racter:i.stic dimension of the irregul___arities over which the relativistic
protons are scattered. Assuming ‘\/b“2 =3 .10"° gauss, we obtain a =
= 3 .100cpn,

The fact that other flares do not indicate such a strong anisotropy,
even those which had heliocoordinates nearly identical to those of the flare
of 4 May 1960, implies that the span of the favorable cone does not exceed
10-20°,

In conclusion we shall formulate the propagation pattern of high-
energy solar protons. Near the Sun, the dimension of irregularities are
apparently greater than the Larmor radius, and the propagation process is
represented by random dr'ifts; here, the diffusive approximation may be
applied, At distances of several tens of solar radii the effective free
path becomes comparable with the distance to the center and this is why

the diffusion approximation is here inapplicable; the Larmor radius becomes
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greater than the characteristic dimension of irregularities and particles
scatter over a small angle. Inasmuch as the effective free path remains

constant, the diffusion regime settles again during a time of the order of
the time of the free path.

#s3s T HE END s*=2+»

Contract No.NAS~5-9299 Translated by ANDEE L, BRICHANT
Consultants and Designers, Inc,
Arlington, Virginia on 14— 15 May 1966
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